2,171 research outputs found

    Optimal Flow for Multi-Carrier Energy System at Community Level

    Get PDF

    Coordinated Risk Mitigation Strategy for Integrated Energy Systems under Cyber-Attacks

    Get PDF

    Impact de la nanostructuration sur la diffusion de l’hydrogène étudiée par une approche multi-échelle dans le matériau pyrochlore La₂Zr₂O₇ dopé Sr

    Get PDF
    Due to the increase of energy demand and environmental issues of fossil energy, many researches are moving towards green energy. In this context, several technologies using hydrogen have been developed. To reduce the working temperature of SOFC fuel cell, the concept of PCFC is emerging. The ionic conductivity is due to hydrogen instead of oxide anions. The A₂B₂O₇ compounds are promising candidates as electrolyte materials for PCFC. However, it appears necessary to understand the hydrogen diffusion mechanisms in these materials before to investigate news materials with best properties. In this work, a multi-scale approach is performed to study the impact of microstructure on proton-conducting properties in Sr doped La₂Zr₂O₇ as model material. Several synthetic routes have been used to obtain powders with different morphologies.At the nanometric scale, studies by X-ray diffraction, then by Raman spectroscopy and electron energy loss spectroscopy (EELS) have shown that the low temperature structure were disordered a pyrochlore structure. The latter is ordered during thermal annealing. At the micrometric scale, ion beam techniques allowed us to get the hydrogen concentration profiles on the previously hydrated materials. The amount of incorporated hydrogen depends on the densification processes. At the macroscopic scale, impedance spectroscopy measurements were used to obtain information on the electrical behavior of materials. Evidence of proton conductivity has been demonstrated in wet atmosphere. This conductivity is highly dependent not only on the sample preparation but also on processes densification used.Face aux demandes croissantes en énergie, la tendance mondiale est au développement des énergies non émettrices de gaz à effets de serre. Dans ce contexte, plusieurs technologies de piles à combustibles utilisant l’hydrogène ont été développées. Le souhait d’abaisser les températures de fonctionnement des SOFC a conduit à s’intéresser au concept des piles PCFC dont la conduction ionique de l’électrolyte est assurée par l’hydrogène au lieu des anions oxydes. Les composés pyrochlores A₂B₂O₇ sont des candidats prometteurs comme matériaux d’électrolyte de PCFC.Il s’avère toutefois indispensable de comprendre les mécanismes de diffusion de l’hydrogène dans ces matériaux avant d’orienter les recherches vers la mise au point d’un matériau électrolyte performant. Dans ce travail, une approche multi-échelle est employée pour étudier l’impact de microstructure sur les propriétés de conduction protonique du matériau modèle La₂Zr₂O₇ dopé Sr. Pour ce faire, plusieurs voies de synthèse ont été utilisées afin d’obtenir des morphologies de poudres différentes.A l’échelle nanométrique, les études structurales menées par diffraction des rayons X puis des études par spectroscopie Raman et spectroscopie de pertes d’énergie des électrons (EELS) ont montré que la structure basse température étaient une structure pyrochlore désordonnée. Cette dernière s’ordonne lors de recuit thermique.Les techniques d’analyses par faisceau d’ions ont permis de sonder à l’échelle micrométrique les profils de concentration en hydrogène des matériaux préalablement hydratés. La quantité d’hydrogène incorporé dépend de la densification de la pastille.Les mesures par spectroscopie d’impédance ont permis d’obtenir des informations à l’échelle macroscopique du comportement électrique des matériaux. Une conductivité protonique a été mise en évidence sous atmosphère humide. Cette conductivité est fortement dépendante non seulement de la méthode d’élaboration des matériaux mais aussi des procédés de densification utilisés

    Impact of Spark Plasma Sintering Conditions on Ionic Conductivity in La1.95Sr0.05Zr2O7-δ Electrolyte Material for Intermediate Temperature SOFCs

    Get PDF
    International audienceSolid Oxide Fuel Cells (SOFC) have attracted much attention as potential energy source. Their high operating temperatures (800°C-1000°C) can lead to thermal, mechanical and chemical problems such as densification of electrodes or formation of an insulating layer at the electrode/electrolyte interface by interdiffusion [1-2]. To overcome these drawbacks, the Proton Ceramic Fuel Cell (PCFC) technology was developed. This technology, where the electrolyte is an H+ ion conductor in the form of ceramic oxide material, exhibits the intrinsic benefits of proton conduction in Polymer Exchange Membrane Fuel Cells (PEMFC) and the advantages of the SOFC technologies. Since the discovery of high temperature protonic conductivity in cerates [3-4], many investigations about pyrochlore-type proton conductors are performed [5-6]. These systems are characterized by mixed valence oxides (often rare earth) and anion vacancies as primary lattice defects. Under wet atmosphere, the proton conduction occurs via the hydration of oxygen vacancies after the material is exposed to a vapour-containing atmosphere according to the following equation 1 (inserted as part of the image file).     The conventional route for the preparation of lanthanum zirconate pyrochlore (LSZO) via solid-state reactions requires multiple milling and high temperature calcination steps. Also, this method leads generally to an heterogeneity of the final product, whereas wet chemical route, which consists of mixing precursors in a solution, could improve compositional homogeneity and stoichiometry. In this work, we have synthesized nano-sized La1,95Sr0,05Zr2O7-d using an oxalic co-precipitation method. As impedance spectroscopy measurements require high densification, only spark plasma sintering (SPS) gives dense materials. Other sintering processes such as hot isostatic pressing induce a segregation of strontium at the surface of the pellet[7],and thereby decrease proton conductivities. LSZO powders were densified using SPS apparatus under different sintering conditions: holding time, temperature and pressure. To maintain the same compacity for different grain sizes, starting powder materials were calcined at different temperatures in order to increase of the particle size. Thus several pellets with either different relative densities or grain sizes were obtained. The grain size increases with increasing of the sintering temperature. The proton conductivity behavior of those pellets was investigated by AC impedance spectroscopy under dry and wet atmospheres. The data were measured in the frequency range 0.1Hz – 6 MHz (Materials mates M2-7260 impedance analyzer) at intermediate temperatures 400-600°C. In order to verify the dependence of total resistance and capacitance, a DC-bias (UDC from 0 to 1V) was applied. The Nyquist diagrams were modeled by equivalent circuits based on resistors and constant phase elements (CPEs).  The ionic conductivities are clearly dependent on grain sizes (see Figure 1). In order to elucidate this dependence, it will be necessary to assess a porosity correction equation. The activation energies, calculated using the Arrhenius equation, increase with increasing grain sizes. The proton conductivities are higher in wet atmosphere than dry atmosphere. For example, the ionic conductivities of 120 nm-LSZO are 2.45 × 10-5 S.cm-1 and 3.30 × 10-5 S.cm-1 under dry and wet atmosphere (5% H2O) at 600°C, respectively. Figure 1 - Nyquist plots of impedance spectra for LSZO with different particle sizes at 600°C References[1]      S.C. Singhal, Solid State Ion. 135 (2000) 305. [2]      C. Xia, W. Rauch, F. Chen, M. Liu, Solid State Ion. 149 (2002) 11. [3]      F. Chen, O.T. Sørensen, G. Meng, D. Peng, J. Mater. Chem. 7 (1997) 481. [4]      H. Iwahara, H. Uchida, K. Ono, K. Ogaki, J. Electrochem. Soc. 135 (1988) 529. [5]      K.E.J. Eurenius, E. Ahlberg, C.S. Knee, Dalton Trans. 40 (2011) 3946. [6]      T. Shimura, M. Komori, H. Iwahara, Solid State Ion. 86–88, Part 1 (1996) 685. [7]      D. Huo, D. Gosset, G. Baldinozzi, D. Siméone, H. Khodja, B. Villeroy, S. Surblé, Solid State Ion. (submitted)

    Learning Optimal Deterministic Auctions with Correlated Valuation Distributions

    Full text link
    In mechanism design, it is challenging to design the optimal auction with correlated values in general settings. Although value distribution can be further exploited to improve revenue, the complex correlation structure makes it hard to acquire in practice. Data-driven auction mechanisms, powered by machine learning, enable to design auctions directly from historical auction data, without relying on specific value distributions. In this work, we design a learning-based auction, which can encode the correlation of values into the rank score of each bidder, and further adjust the ranking rule to approach the optimal revenue. We strictly guarantee the property of strategy-proofness by encoding game theoretical conditions into the neural network structure. Furthermore, all operations in the designed auctions are differentiable to enable an end-to-end training paradigm. Experimental results demonstrate that the proposed auction mechanism can represent almost any strategy-proof auction mechanism, and outperforms the auction mechanisms wildly used in the correlated value settings

    A two-stage data-driven multi-energy management considering demand response

    Get PDF

    The complexity of asynchronous model based testing

    Get PDF
    This is the post-print version of the final paper published in Theoretical Computer Science. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.In model based testing (MBT), testing is based on a model MM that typically is expressed using a state-based language such as an input output transition system (IOTS). Most approaches to MBT assume that communications between the system under test (SUT) and its environment are synchronous. However, many systems interact with their environment through asynchronous channels and the presence of such channels changes the nature of testing. In this paper we investigate the situation in which the SUT interacts with its environment through asynchronous channels and the problems of producing test cases to reach a state, execute a transition, or to distinguish two states. In addition, we investigate the Oracle Problem. All four problems are explored for both FIFO and non-FIFO channels. It is known that the Oracle Problem can be solved in polynomial time for FIFO channels but we also show that the three test case generation problems can also be solved in polynomial time in the case where the IOTS is observable but the general test generation problems are EXPTIME-hard. For non-FIFO channels we prove that all of the test case generation problems are EXPTIME-hard and the Oracle Problem in NP-hard, even if we restrict attention to deterministic IOTSs
    • …
    corecore